/Type /Annot >> endobj /Border[0 0 0]/H/I/C[1 0 0] 143 0 obj << /A << /S /GoTo /D (subsection.4.10) >> /D [114 0 R /XYZ 133.768 667.198 null] /Subtype /Link >> endobj /Rect [147.716 286.08 206.939 296.928] endstream /Border[0 0 0]/H/I/C[1 0 0] /Type /Annot /Type /Annot 122 0 obj << /Type /Annot 158 0 obj << 24 0 obj i��q�c��\vM�psl8�yIx��pf�
A�� ��b�(=��1���I���@�����
*��:�f��ɷ(�D�F�"��U6�0d'��)��(.fp�l�hkۻ�4��0n��t���������ue=����. /Subtype /Link /A << /S /GoTo /D (subsection.4.5) >> /Border[0 0 0]/H/I/C[1 0 0] /Border[0 0 0]/H/I/C[1 0 0] /Rect [466.521 299.972 478.476 308.385] w6[�JO��x����An� ��a���';U�;͆kSW���}�D�=Y��2����F�n�j����E/�����n�=�/�h�b�'SΌY�t��ML 6 With subdemonstrations. 4 0 obj 84 0 obj /Rect [471.502 429.487 478.476 437.899] (Negation) << /S /GoTo /D (subsection.4.5) >> 13 I had this one in an exam. Ng�;�v䒁1����e-0�kL�z(B
����dh�AgWyiϐޘ����Zr*D /Border[0 0 0]/H/I/C[1 0 0] endobj 25 0 obj /MediaBox [0 0 612 792] /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] 170 0 obj << /Rect [466.521 206.323 478.476 214.736] 8 One to think. >> endobj endobj 36 0 obj >> endobj endobj /Filter /FlateDecode /Subtype /Link << /S /GoTo /D (subsection.4.2) >> 65 0 obj /Rect [132.772 254.144 195.6 263.055] 5. /Rect [147.716 298.035 264.169 308.883] << /S /GoTo /D (section.1) >> /Border[0 0 0]/H/I/C[1 0 0] >> endobj /Type /Annot �`�$���*+�8�4�N_��Z͋��8��х�ZD�������@���ϟٛ�]�T|�1�B�? '*���a�`L�{��-S�0?8�É���iy�`����\��mKh���B'e�Z{�;А �A�D��ņ?Y /Type /Annot /Border[0 0 0]/H/I/C[1 0 0] /A << /S /GoTo /D (subsection.4.7) >> 45 0 obj >> endobj /Subtype /Link << /S /GoTo /D (subsection.4.8) >> /Type /Annot /Rect [147.716 144.61 206.939 155.459] << /S /GoTo /D (subsection.4.7) >> /Border[0 0 0]/H/I/C[1 0 0] 118 0 obj << >> endobj (Identity) endstream 141 0 obj << 53 0 obj >> endobj x��XKo#E��W�hK;���~fh��!V����,@p@ ����yv�{<3�A��n�(�|�W�����zG� )���8��p(�S�� 0���o�_>m��W�By��~�}\.7���#��|x|��{&���v[�
��>m��W�����O�ۇ��X}{�/�;a�]@�+W=��w�;��+�kAN/ /Border[0 0 0]/H/I/C[1 0 0] endobj %PDF-1.5 /Font << /F15 175 0 R /F16 176 0 R /F35 178 0 R /F36 179 0 R /F8 180 0 R >> /ProcSet [ /PDF /Text ] Sinon, proposez un contre-modèle. /Type /Annot >> endobj >> endobj endobj /A << /S /GoTo /D (subsection.4.2) >> /Rect [470.755 453.397 478.476 461.81] /Type /Annot /A << /S /GoTo /D (subsection.5.7) >> 5. /Type /Annot /A << /S /GoTo /D (subsection.4.10) >> 2�W� �2&K6G�5VV�j��K#
��&sn| ��X� endobj /Subtype /Link 147 0 obj << >> endobj /A << /S /GoTo /D (subsection.3.1) >> >> endobj 96 0 obj 105 0 obj /Subtype /Link /A << /S /GoTo /D (subsection.4.3) >> /Subtype /Link endobj /Border[0 0 0]/H/I/C[1 0 0] 1 0 obj /A << /S /GoTo /D (subsection.5.2) >> endobj >> endobj L2 7 calcul classique des propositions est dit "monotone" en vertu de cette propriété. /Type /Annot >> endobj /Border[0 0 0]/H/I/C[1 0 0] >> endobj /Type /Annot /A << /S /GoTo /D (subsection.4.5) >> /Rect [147.716 357.811 222.159 368.659] 72 0 obj 114 0 obj << /Border[0 0 0]/H/I/C[1 0 0] /Type /Annot 77 0 obj endobj /Border[0 0 0]/H/I/C[1 0 0] >> endobj 142 0 obj << /Subtype /Link 97 0 obj 5 Explained exercises. endobj 113 0 obj << /S /GoTo /D (subsection.4.3) >> /Filter /FlateDecode 44 0 obj /Border[0 0 0]/H/I/C[1 0 0] << /S /GoTo /D (subsection.5.7) >> endobj /Type /Annot �/7t��|���iq甦�N�����UD`"��JD8�o�VtZ\ۇ�N#�M�7e�J�\{��I��xC��s}-���OF%�Uج�2 �4 /Type /Annot /Type /Annot >> endobj >> endobj endobj >> endobj �t�B�)Ӆ�4��o��(nT 133 0 obj << %PDF-1.5 5. /Type /Annot /Border[0 0 0]/H/I/C[1 0 0] Ici, :C suitdesprémisses(1),(2)et(3);donc:Csuitaussidesprémisses(1),(2),(3)et(4). %���� >> endobj >> >> endobj /Border[0 0 0]/H/I/C[1 0 0] /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] (Negation) /Border[0 0 0]/H/I/C[1 0 0] (Implication) /Subtype /Link 168 0 obj << /A << /S /GoTo /D (subsection.4.4) >> >> endobj /Type /Annot /Annots [ 115 0 R 116 0 R 117 0 R 118 0 R 119 0 R 120 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R 131 0 R 132 0 R 133 0 R 134 0 R 135 0 R 136 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R 145 0 R 146 0 R 147 0 R 148 0 R 149 0 R 150 0 R 151 0 R 152 0 R 153 0 R 154 0 R 155 0 R 156 0 R 157 0 R 158 0 R 159 0 R 160 0 R 161 0 R 162 0 R 163 0 R 164 0 R 165 0 R 166 0 R 167 0 R 168 0 R 169 0 R 170 0 R ] /Type /Annot 56 0 obj 117 0 obj << 69 0 obj /Border[0 0 0]/H/I/C[1 0 0] >> endobj ��G�8�d������CkZ,U�~J��@��'���f�h��-������萤�� �a¿�p_1�ہ���@X� 5. /Rect [466.52 383.658 478.476 392.071] 136 0 obj << 161 0 obj << 124 0 obj << 132 0 obj << /Subtype /Link 166 0 obj << /Rect [147.716 415.594 264.169 426.442] /Subtype /Link /Subtype /Link >> endobj /Rect [465.026 395.614 478.476 404.026] 164 0 obj << >> endobj 169 0 obj << /Rect [147.716 369.766 226.034 380.504] >> endobj /Border[0 0 0]/H/I/C[1 0 0] endobj 12 0 obj endobj /Rect [466.521 335.838 478.476 344.251] >> (Disjunction) endobj (Universal quantifier) 4 Using iteration. /Rect [132.772 451.46 237.941 462.308] /Rect [147.716 321.945 211.643 332.683] /Border[0 0 0]/H/I/C[1 0 0] /Subtype /Link /A << /S /GoTo /D (subsection.5.6) >> /Type /Annot 137 0 obj << >> endobj >> endobj 76 0 obj /Border[0 0 0]/H/I/C[1 0 0] 5. /Border[0 0 0]/H/I/C[1 0 0] /A << /S /GoTo /D (section.5) >> /A << /S /GoTo /D (subsection.5.7) >> 138 0 obj << 109 0 obj /Type /Annot /Rect [147.716 194.368 230.6 203.279] << /S /GoTo /D [114 0 R /Fit] >> /Subtype /Link endobj (Core) /Rect [470.755 497.233 478.476 505.645] endobj << /S /GoTo /D (section.4) >> endobj 13 0 obj /Border[0 0 0]/H/I/C[1 0 0] >> endobj /Rect [470.755 475.315 478.476 483.728] /A << /S /GoTo /D (subsection.4.8) >> /A << /S /GoTo /D (subsection.4.1) >> /A << /S /GoTo /D (subsection.5.9) >> /A << /S /GoTo /D (subsection.4.6) >> /Rect [466.521 347.793 478.476 356.206]
2020 natural deduction exercises